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OP :TIMUM C O N D I T I O N S  F O R  E X C I T A T I O N  

OF E L A S T I C  V I B R A T I O N S  IN S O L I D S  BY 

P U L S E D  I O N I Z I N G  R A D I A T I O N  

V. D.  V o l o v i k  a n d  S. I .  I v a n o v  UDC 534.231+ 539.121.7 

Investigations of elastic vibrations accompanying the interaction of pulsed ionizing radiation with solids 
have shown that mechanical s t resses  are  produced by an unsteady thermoelast ic  body force F(r ,  t) [1, 2] 

F(r, t) = - - r y E ( r ,  t), (1) 

where F is the Gr'dneisen constant of the target  material  and E(r,  t) is the energy absorbed from the beam of 
ionizing radiation per  unit volume of target  mater ial .  

Ordinarily nonstatiqnary thermoelastiqity problems require the simultaneous solution of the wave equa- 
tion and the heat-conduction equation. If the duration of a pulse of charged part icles T O interacting with a solicl 
target  satisfies the condition 

the propagation of heat does not have to be taken into account during a t ime on the order  of magnitude of the 
pulse duration. Here Tel is the t ime to establish uniform temperature conditions in the electron and ion sub- 
systems of the material ,  T T is the character is t ic  time for heat to diffuse from the region heated by a beam 
of radius r0, and ~ is the thermal diffusivity of the target  material .  

If condition (2) holds, and in addition TS= rb/s<<v T, the temperature of the region heated by the beam 
can be considered constant even for a time T s -- the time for an acoustic wave propagating with velocity s to 
leave this region. In this case the problem of finding the displacement of elastic waves u excited by a pulsed 
beam of particles is reduced to the problem of solving the wave equation, which for an infinite target can be 
written in the form 
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- s ' A u  = ( t / p ) F ( r ,  t).  (3)  

Equation (3) is  solved in the long-wave leng thapprox imat ion  (low f requenc ies  60), i .e . ,  for  k = s/60 >> rb  [1] when 
the f i r s t  t e r m  can be neglected and IVl ~ 1 / r  b. F o r  this range  of f requenc ies  the expe r imen ta l  r e su l t s  [3] a r e  
in good a g r e e m e n t  with theory .  

However ,  for  f requenc ies  60 ~ a rea  x which make  the main  contr ibution to the f requency spec t rum of an 
exci ted acous t ic  pulse [4], the wave equation (3) is  difficult to solve.  He re  the Wmax a r e  the m a x i m u m  r e -  
corded f requencies  for  which the condition of coherent  recep t ion  

~max " - ~  rain {~[ITb, s/rb} (4) 

is  sa t i s f ied .  T h e r e f o r e ,  the p r e s s u r e  of e las t ic  waves  in the wave zone 

p N p s l u l ~ ( r  , ~DO(R)  (5)  

will be de te rmined  by the s pec t rum  of f requenc ies  p re sen t  in the acous t ic  pulse ,  s ince f o r  co ~ 0)maxjU i = Iul(~). 
Here  p is  the densi ty  of  the medium,  Ha(r, ~l) i s  the coherence  factor  which t akes  account  of the i n t e r f e r ence  
pa t t e rn  f rom the longitudinal T l and the t r a n s v e r s e  r d imensions  of the radia t ion  zone [when condition (4) is  
sa t i s f ied  ~v(r, V'l) = 1]; | is a coefficient  taking account  of the spat ia l  a t tenuat ion (at a d is tance R) of the 
p r e s s u r e  in the acous t ic  flux. 

I t  was  noted e a r l i e r  that  the spec t rum of f requencies  of  the acous t ic  pulse is  r e la ted  to the conditions 
of exci tat ion [4, 5]. I t  depends on the s ize of the region of in terac t ion  of the beam with the ta rge t ,  the duration 
of the cu r r en t  pulse  of the a c c e l e r a t o r ,  and the kind of t a rge t  ma te r i a l .  

All d o s i m e t r y  p r o b l e m s  which can be inves t iga ted  by the methods of radia t ion acous t ics  can a r b i t r a r i l y  
be divided into in tegral  and di f ferent ia l  types .  In tegra l  p rob l ems  (determinat ion of the total number  of 
pa r t i c l e s  pe r  pulse ,  the total  ene rgy  abso rbed  in ma t t e r ,  etc.) a r e  solved for w << 60max [cf. (3)], and different ial  
p r o b l e m s  (determinat ion of the spat ia l  dis t r ibut ion of the energy  abso rbed  in the ta rge t ,  the distr ibution of the 
densi ty  of pa r t i c l e s  in the beam,  etc.) a r e  solved for  Aw ~ Wma x (they r equ i r e  solutions of the whole sy s t em 
of t he rmoe l a s t i c i t y  equations).  T h e r e f o r e ,  to solwv var ious  kinds of physica l  and applied p r o b l e m s  using 
acous t ic  waves  exci ted by ionizing radia t ion i t  is  n e c e s s a r y  to find a p a r a m e t e r  which de t e rmines  the condition 
for the i r  exci ta t ion and whose op t imum value  can be found for  the p r o b l e m  being solved. The p r e sen t  paper  
r e p o r t s  on an expe r imen ta l  solution of this p rob lem.  

The f o r m  of the p a r a m e t e r  was de te rmined  f rom the following cons idera t ions .  The mechanica l  p r e s s u r e  
exci ted (5) for  constant  d i ss ipa t ive  ene rgy  l o s s e s  of the beam in the t a rge t  E d de t e rmines  the convers ion 
fac tor  k of  energy  Ed into ene rgy  of e las t i c  v ibra t ions  Em : 

k = EmlE,~ ,'.." p~/E d. (6) 

The mechan ica l  ene rgy  @ t r ansmi t t ed  through the su r face  27r rbh can be obtained by substi tut ing into the 
equation for the Poynting vec to r  ave raged  over  a per iod the value of the effect ive acous t ic  p r e s s u r e  obtained 
f rom (1): 

d) -- (~r~/ps)E2(r, t)r~h. (7) 

The de te rmina t ion  of the total  mechan ica l  ene rgy  t r a n s p o r t e d  by the flux @ is  cer ta in ly  co r r ec t  only for 
f requencies  w---Wma x (4), s ince according  to [4], 1/Wmax< ~'a, where  v a is  the duration of the acous t ic  pulse 
exci ted.  T h e r e f o r e ,  for  e las t ic  v ib ra t ions  of f requency w :~ Wmax, accord ing  to (6) and (7) 

k ~_. r r~ E (r, t) 
(8) UE (r, t) r2h ps rb O~ 

Having de t e rmined  the r e l a t ive  convers ion fac tor  ~ for  the m a x i m u m  frequency and f requenc ies  close to i t  

{ ; (%)lk (rdsj, % > rd  s, 
~1 = (rds)l k (%), % < rds, 

we obtain by using (8) and (4) 

( ~:b s j --;, > 
~i = I / '%~k- i  
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i .e . ,  for  f requenc ies  nea r  and equal to Wma x the convers ion fac tor  depends on the ra t io  of  fb  to r b / s .  

Assuming  the s ame  re la t ion  also for  f requenc ies  cha rac t e r i z ing  the actual  r eco rded  pulse of mechanica l  
p r e s s u r e  (5) [4] we chose ~ as the exci ta t ion p a r a m e t e r  fo r  expe r imen ta l  invest igat ion.  

A pulsed col l imated  e lec t ron  beam f r o m  an I F P  AN SSSR m i c r o t r o n  exci ted e las t i c  v ibra t ions  in an 
a luminum disk 9 em in d i a m e t e r  and h = 0.1 cm thick. The init ial  energy  of the e l ec t rons  was 12 MeV and the 
a v e r a g e  number  p e r  pulse was ~ 1011. The v ib ra t ions  exci ted were  r eco rded  by a nonresonant  wide-band 
p i ezoe lec t r i c  c e r a m i c  t r a n s d u c e r  (Aw ~ 1.5 Mttz). The longitudinal component  of  the ze ro  Lamb wave was 
r eco rded  in the exper imen t .  The e l ec t r i c  s ignal  U f r o m  the de tec tor  ( c r e s t  value) was t r a n s m i t t e d  through a 
p r e a m p l i f i e r  to an osc i l loscope  whose sweep was  t r i gge red  by a synchroniz ing pulse  f rom the a c c e l e r a t o r .  
The pulsed beam cu r r en t  was m e a s u r e d  with a F a r a d a y  cup placed a f t e r  the d i sk - t a rge t .  The p a r a m e t e r  
was  v a r i e d  by va ry ing  r b f r o m  0.5 to 0.15 cm and ~'b over  the range  (2.2-0.3) "10 -6 sec .  The dependence of 
U ~ p  on ~? was inves t iga ted  in the experiment,  for  a single value of the ene rgy  of d iss ipa t ive  l o s s e s  of the beam.  

The r e s u l t s  obtained a r e  shown in Fig. 1 where  points 1 cor respond  to Tbs / r  b < 1 and points 2 to T b s / r  b > 
1. Ana lys i s  of the expe r imen ta l  r e s u l t s  shows that points 1 and 2 lie on a single branch of the graph;  lee., the 
quant i t ies  ~'b and r b / s  make  equivalent  contr ibut ions to the p a r a m e t e r  ~?. Using this and the fact  that  the fo rm 
of the p a r a m e t e r  77 was obtained f r o m  a considera t ion  of the convers ion fac tor  k, points 3 show the re la t ion  
U2(~ ) ~k0/ )  obtained by taking account  of  (6). 

The expe r imen ta l  r e s u l t s  conf i rm the dependence of the r e co rded  p r e s s u r e  of the u l t r a son ic  waves  
exci ted in sol ids  by pulsed ionizing radia t ion  on the exci tat ion conditions chosen.  Fo r  wide-band record ing  of 
the exci ted acous t i c  pulse  the op t imum condition (condition of m a x i m u m  response)  is  ~? = 1 (different ia l  p r o b -  
l ems  of r ad i a t i on -acous t i c  dos ime t ry ) .  

In the m e a s u r e m e n t  of  cer ta in  c h a r a c t e r i s t i c s  of  sol ids  by compar ing  the ampl i tudes  of  the acous t ic  
pu l ses  exci ted in t hem by beams  of ionizing radia t ion  [2], the op t imum condition [condition for  the ampli tude 
to be independent of the b e a m  p a r a m e t e r s  (Fig.  1)] is  ~ > 5 ( integral  p r o b l e m s  of r ad ia t ion-acous t i c  dos imet ry) .  
The s a m e  inequal i ty  m u s t  be sa t i s f ied  in using an acous t ic  s ignal  to invest igate  va r ious  ef fec ts  [6] of the in te r -  
ac t ion  of beams  of p a r t i c l e s  with thick t a r g e t s  (the ampl i tude of an acous t ic  pulse for  wide-band record ing  
does  not depend on the change of the t r a n s v e r s e  d imensions  of  the beam as  it l eaves  the target ) .  

The au thors  thank Yu. M. Ts ipenyuk for  help in p e r f o r m i n g  the m e a s u r e m e n t s .  

2.  

L I T E R A T U R E  C I T E D  

V. D. Volovik and V. T.  Lazur ik-]~l ' t suf in ,  "Acoust ic  effect  of  b e a m s  of charged pa r t i c l e s  in m e t a l s , "  
Fiz.  Tverd .  Tela ,  15, No. 8, 2305-2307 (1973). 
V. D. Volovik and S. I .  Ivanov,  " T h e r m o e t a s t i c  d o s i m e t r y  of  beams of charged p a r t i c l e s , "  Zh. Tekh. Fiz . ,  
45, N o .  8, 1789-1791 (1975). 

844 



3. 

4. 

5. 

6. 

I .  A. Borshkovs ld i  and VI D. Volovik,  "Invest igat ion of the excitat ion of acous t ic  �9 in me ta l s  by 
e l ec t rons  and p ro tons , "  Izv.  Vyssh.  Uchebn. Zaved. ,  Fiz . ,  No. 10, 72-76 (1973). 
V. D. Volovik and S. I .  I v a n , v ,  "E las t i c  waves  f rom pulsed beams  of charged p a r t i c l e s  in me ta l  and 
pseudodie lec t r i c  s l abs , "  P r ib .  Tekh.  ]~ksp., No. 5, 29_732 (1975). 
V. D. Volovik and S. I .  Ivanov,  "E las t i c  waves  in me ta l s  f rom pulsed pene t ra t ing  beams  of e lec t rons  and 
protons ,  ~ in: S u m m a r i e s  of P a p e r s  of the Eighth All-Union Conference on Quantum Acoust ics  and 
Acous t ic  E lec t ron ic s  [in Russ ian] ,  TsNTI ,  Kazan '  (1974). 
I .  A. Borshkovski i ,  V. D. Volovik,  and V. T.  Lazur ik- t~l ' t suf in ,  "Acoust ic  peak  of pro tons  in a solid s lab,"  
Zh. P r ik l .  Mekh. Tekh.  Fiz . ,  No. 2, 138-140 (1975). 

UPPER EVALUATION OF POWER OF SURFACE 

FORCES WITH DEFORMATION OF A MEDIUM 

WITH A LIMITED INTENSITY OF TANGENTIAL 

STRESSES 

G.  V .  I v a n o v  UDC 539.3 

We consider  a med ium in which the in tensi ty  of the tangential  s t r e s s e s  cannot exceed a given value.  In 
other  respects~ the med ium is  a r b i t r a r y :  The connection between the s t r e s s e s  and the deformat ions  can be 
a r b i t r a r y ;  speci f ica l ly ,  the deformat ion  can be accompanied  by a breakdown of the continuity ( f rac ture) .  With 
the deformat ion  of such a medium,  the power  of the fo rces  a t  that pa r t  of the su r face  where  the ve loc i t ies  
a r e  given can be evaluated f r o m  above [1]. In the p r e sen t  a r t i c le  a m o r e  genera l  evaluation is proposed,  based 
on the use  of the k inemat ica l ly  poss ib le  field of the ve loc i ty  and a model  of  an inhomogeneous v iscous  in- 
c o m p r e s s i b l e  liquid. I f  the v i s c o s i t y  coeff icient  i s  de te rmined  f rom the condition of a m in imum of the eva lua-  
tion, i t  coincides with the known value [1]. The use of the proposed evaluation makes  it poss ib le  to obtain 
s imple  evaluat ions of the power  of the s u r f a c e s  and to calculate by success ive  approx imat ions  the min imal  
evaluation in a given c lass  of k inemat ica l ly  poss ib le  ve loci t ies .  

w i. Upper Evaluation of Power of Surface Forces 

~ii be any s t r e s s e s ,  in the region ~, sat isfying the equi l ibr ium equations Let  

ai*5,~ + f~ = 0, i = i, 2, 3, (1.1) 

the inequal i ty  

a~aij ~ 2~ ~, ~ = aij - -  8 i j ~ * ,  ~ * ~  T 8~fr (1.2) 

and, in the parL Scr of the boundary S of the region ~2, the conditions 

a~jvy = p,, i = 1, 2, 3. (1 .3)  

In (1.1)-(1.3) and in what follows a c a r t e s i a n  s y s t e m  of coordinates  i s  used; fi, Pi a r e  given functions; T is a 
constant;  v i a r e  the components  of an ex te rna l  unit normal  to the su r face  S. 

Let  u* be the components  of the vec to r  of the veloci ty ,  given a t  Su; Su=S - So; u i i s  some k inemat ica l ly  
poss ib le  field of  the ve loc i t i e s ,  i .e . ,  a field of  the ve loc i t i es  sat isfying the condition of i ncompres s ib i l i t y  in 

6~ju~,~ = 0 (1 .4)  

and the condition at  S u 

(~, - ~;)~ = 0 (1.5) 

The ve loc i t i e s  u i can have tangent ia l  discont inui t ies  a t  some  su r faces  Sk, k=  1, 2 . . . .  , m.  
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