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OPTIMUM CONDITIONS FOR EXCITATION
OF ELASTIC VIBRATIONS IN SOLIDS BY
PULSED IONIZING RADIATION

V. D. Volovik and S. I. Ivanov UDC 534.231+539.121.7

Investigations of elastic vibrations accompanying the interaction of pulsed ionizing radiation with solids
have shown that mechanical stresses are produced by an unsteady thermoelastic body force F(r, t) [1, 2]

F(, 1) = —I'vE(, 1), (1)

where T is the Grilneisen constant of the target material and E(r, t) is the energy absorbed from the beam of
ionizing radiation per unif volume of target material.

Ordinarily nonstationary thermoelasticity problems require the simultaneous solution of the wave equa-
tion and the heat~conduction equation. If the duration of a pulse of charged particles 71, interacting with a solid
target satisfies the condition

T,y <. Th & Tp & /X, (2)

the propagation of heat does not have to be taken into account during a time on the order of magnitude of the
pulse duration. Here Tej is the time to establish uniform temperature conditions in the electron and ion sub-
systems of the material, 7T is the characteristic time for heat to diffuse from the region heated by a beam
of radius ry, and » is the thermal diffusivity of the target material,

If condition (2) holds, and in addition Tg= rb/ ST, the temperature of the region heated by the beam
can be considered constant even for a time 7g — the time for an acoustic wave propagating with velocity s to
leave this region. In this case the problem of finding the displacement of elastic waves u excited by a pulsed
beam of particles is reduced to the problem of solving the wave equation, which for an infinite target can be
written in the form

Khar'kov, Tfanslatedfrom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 137-140,
. November-December, 1977. Original article submitted November 23, 1976.

842 0021-8944/77/1806-0842 $07.50 © 1978 Plenum Publishing Corporation



it — s*Au = (1/p)F(r, t). (3)

Equation (3) is solved in the long-wavelength approximation (low frequencies w), i.e., for A =s/w> rp [1] when
the first term can be neglected and [V]~1/r,. For this range of frequencies the experimental results [3] are
in good agreement with theory.

However, for frequencies w £ wy,,y which make the main contribution to the frequency spectrum of an
excited acoustic pulse [4], the wave equation (3) is difficult to solve. Here the wpax are the maximum re-
corded frequencies for which the condition of coherent reception

Omax = min {{/t,, s/r,} (4)
is satisfied. Therefore, the pressure of elastic waves in the wave zone
p ~ pslujog(r, 7)O(R) (5

will be determined by the spectrum of frequencies present in the acoustic pulse, since for o < ®max, 8] = uj{).
Here p is the density of the medium, ¢(r, 77) is the coherence factor which takes account of the interference
pattern from the longitudinal 77 and the transverse r dimensions of the radiation zone [when condition (4) is
satisfied ¢(r, 77) =1]; ®(R) is a coefficient taking account of the spatial attenuation (at a distance R) of the
pressure in the acoustic flux.

It was noted earlier that the spectrum of frequencies of the acoustic pulse is related to the conditions
of excitation [4, 5]. It depends on the size of the region of interaction of the beam with the target, the duration
of the current pulse of the accelerator, and the kind of target material.

All dosimetry problems which can be investigated by the methods of radiation acoustics can arbitrarily
be divided into integral and differential types. Integral problems (determination of the total number of
particles per pulse, the total energy absorbed in matter, etc.) are solved for w < wmgx [cf.(3)], and differential
problems (determination of the spatial distribution of the energy absorbed in the target, the distribution of the
density of particles in the beam, etc.) are solved for Aw ~ w4« (they require solutions of the whole system
of thermoelasticity equations). Therefore, to solve various kinds of physical and applied problems using
acoustic waves excited by ionizing radiation it is necegsary to find a parameter which determines the condition
for their excitation and whose optimum value can be found for the problem being solved. The present paper
reports on an experimental solution of this problem.

The form of the parameter was determined from the following considerations. The mechanical pressure
excited (5) for constant dissipative energy losses of the beam in the target Eq determines the conversion
factor k of energy E{ into energy of elastic vibrations Epy ¢

k = En/E; ~ p*lE,. (6)

The mechanical energy ¢ transmitted through the surface 27 rph can be obtained by substituting into the
equation for the Poynting vector averaged over a period the value of the effective acoustic pressure obtained
from (1):

O = (nl?/ps) E%rx, f)ryh. n

The determination of the total mechanical energy transported by the flux ® is certainly correct only for
frequencies w=~ wmyax (4), since according to [4], 1/ Wmax < Ty, Where T, is the duration of the acoustic pulse
excited. Therefore, for elastic vibrations of frequency w = wmax, according to (6) and (7)

D T2E(r, 1)

~ —

T aE@, )i 05 e’ (8)

Having determined the relative conversion factor 7 for the maximum frequency and frequencies close to it

_ { k() k (ryfs), Ty >1p/s,
, =1k (ro/s)/k (Ty), Ty < 14is,
we obtain by using (8) and (4)

Ty 8
b
T Ty > TS,

n= -t '
(T_bf) ) Tb < rb/s;
Ty
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i.e., for frequencies near and equal to w55 the conversion factor depends on the ratio of T, to rp/s.

Assuming the same relation also for frequencies characterizing the actual recorded pulse of mechanical
pressure (5) [4] we chose 7 as the excitation parameter for experimental investigation.

A pulsed collimated electron beam from an IFP AN SSSR microtron excited elastic vibrations in an
aluminum disk 9 cm in diameter and h=0.1 cm thick. The inifial energy of the electrons was 12 MeV and the
average number per pulse was ~10!L The vibrations excited were recorded by a nonresonant wide-band
piezoelectric ceramic transducer (Aw= 1.5 MHz). The longitudinal component of the zero Lamb wave was
recorded in the experiment. The electric signal U from the detector (crest value) was transmitted through a
preamplifier to an oscilloscope whose sweep was triggered by a synchronizing pulse from the accelerator.
The pulsed beam current was measured with a Faraday cup placed after the disk-target. The parameter 7
was varied by varying rp from 0.5 to 0.15 cm and Th over the range (2.2-0.3)* 10~¢ sec. The dependence of
U~p on 71 was investigated in the experiment for a single value of the energy of dissipative losses of the beam,

The results obtained are shown in Fig. 1 where points 1 correspond to 7,,8/rp, < 1 and points 2 to Ts/rp>
1. Analysis of the experimental results shows that points 1 and 2 lie on a single branch of the graph; i.e., the
quantities Ty, and rp/s make equivalent contributions to the parameter 7. Using this and the fact that the form
of the parameter n was obtained from a consideration of the conversion factor k, points 3 show the relation
U%n ) ~k(n) obtained by taking account of (6).

The experimental results confirm the dependence of the recorded pressure of the ultrasonic waves
excited in solids by pulsed ionizing radiation on the excitation conditions chosen. For wide-band recording of
the excited acoustic pulse the optimum condition {condition of maximum response) is n=1 (differential prob-
lems of radiation-acoustic dosimetry).

In the measurement of certain characteristics of solids by comparing the amplitudes of the acoustic
pulses excited in them by beams of ionizing radiation [2], the optimum condition [condition for the amplitude
to be independent of the beam parameters (Fig. 1)1 is n>5 (integral problems of radiation-acoustic dosimetry).
The same inequality must be satisfied in using an acoustic signal to investigate various effects [6] of the inter-
action of beams of particles with thick targets (the amplitude of an acoustic pulse for wide-band recording
does not depend on the change of the fransverse dimensions of the beam as it leaves the target).

The authors thank Yu. M. Tsipenyuk for help in performing the measurements.
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UPPER EVALUATION OF POWER OF SURFACE
FORCES WITH DEFORMATION OF A MEDIUM
WITH A LIMITED INTENSITY OF TANGENTIAL
STRESSES

G. V. Ivanov UDC 539.3

We consider a medium in which the intensity of the tangential stresses cannot exceed a given value. In
other respects, the medium is arbitrary: The connection between the stresses and the deformations can be
arbitrary; specifically, the deformation can be accompanied by a breakdown of the continuity (fracture). With
the deformation of such a medium, the power of the forces at that part of the surface where the velocities
are given cah be evaluated from above [1]. In the present article a more general evaluation is proposed, based
on the use of the kinematically possible field of the velocity and a model of an inhomogeneous viscous in-
compressible liquid. If the viscosity coefficient is determined from the condition of a minimum of the evalua-
tion, it coincides with the known value [1]. The use of the proposed evaluation makes it possible to obtain
simple evaluations of the power of the surfaces and to calculate by successive approximations the minimal
evaluation in a given class of kinematically possible velocities.

§ 1. Upper Evaluation of Power of Surface Forces

Let a-{g be any stresses, in the region @, satisfying the equilibrium equations
oii+fi=0,i=1,2,3, (1.1
the inequality
01705 < 22, 0y — 03 — 8, 0%, ¥ = —%— 8 0%, (1.2)
and, in the part 8; of the boundary S of the region Q, the conditions
* iV =Py, i=1,2,3. (1.3)

In (1.1)-(1.3) and in what follows a Cartesian system of coordinates is used; fj, p; are given functions; T is a
constant; v are the components of an external unit normal to the surface S,

Let u"{ be the components of the vector of the velocity, given at Sy; S; =8 — 8, ; y; is some kinematically
possible field of the velocities, i.e., a field of the velocities satisfying the condition of incompressibility in £

Bitiny =0 ’ , (1.4)
and the condition at S
(ui — u;)"i =0. (1.5)

The velocities u; can have tangential discontinuities at some surfaces S k=1, 2, wv, m,
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